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I. Let /denote a real-valued Lebesgue integrable function defined on
a nondegenerate compact real interval /. For n a fixed nonnegative integer,
let P, denote the set of real polynomials of degree n or less. If g € P, is such
that
| /—qidx= inf ’ Vf— pdx,
v P, Uy
we call g a best approximant to f.

If f'is continuous, ¢ is known to be unique. In [I] Rivlin and Kripke show
that ¢ is unique when f has certain types of discontinuities. If, however, f has
a jump discontinuity, ¢ may or may not be unique. In this note we show that
if f has a finite number of jump discontinuities and is continuous elsewhere.
then f has a unique *“distinguished’” best approximant.

IL. In order to prove our main theorem (Theorem 1), we make a
definition and state two lemmas.

DeriNniTION.  We call x,,, an interior point of [, a c¢rossing of a real-valued
function f defined on /. it f(x}x — x,) is either everywhere nonnegative or
everywhere nonpositive in some neighborhood of x, .

The following characterization lemma is a special case of [1, Theorem [.3].

LEMMA L. Let fe L] and qe P, be such that | — q has only a finite
number of zeros in I. Then

| '/ -qldy = inf | [—pildy
Jr pEP,

* This paper is taken in part from a thesis submitted by M. P. Carroll in partial fui-
fillment of the requirements for the Ph.D. degree in the Department of Mathematics at
Rensselaer Polytechnic Institute.
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if and only if
|. psgn(f - ¢)dy = 0
I

forall pe P, .

Lemma 2. Let [ be a real-valued Lebesgue integrable function on I,
continucus there except possiblv at x, e 1. Let ge P, (n == 1) be such that

|‘ {f—qidy = inf | = pldy
Ry peP, Jy

Then | — q has at least n zeros in 1 — {x,}.
Proof of Lemma 2. Assume Lemma 2 is false. Then /- ¢ has exactly k
zeros in / — {x,}, 0 <2 k << n. By Lemma 1,

J' I -sen(f — q)dx = 0.
I

Thus f -- ¢ has at least one crossing in /. Let x, < x, <Z -~ << x,, be the
crossings of f — ¢. 1t follows that

|. psen(/ — g)dx == 0
1

where p(x) = [Tiey (x — x,). By Lemma 1. m > n. Since f — ¢ is continuous
in [ except possibly at x, ., f — ¢ must be zero at at least m -- | of the x,’s
each of which belongs to I — {x,}. Thus & = m — | = n, which contradicts
our assumption.

THEOREM . Let [ be a real-valued lebesgue integrable function on I,
continuous there except possibly at x,€ 1. Let g and § belong to P, (n = 0)
and be such that

|~ | f—qldxy = ‘ |f—= g ldx — inf ' | f— pidx.
Jy Jr peb, Jy

Then if q and g have the same leading coefficient, ¢ = ¢.

Proof. We assume »n 2= 1 since the theorem is trivially true for n - 0.
An application of the triangle inequality shows that

|1/ = ba = Dldx ~ inf [ f=pld,
Jr peEP, Jy
Thus

[0r—ta=a — 1 /a1~ L1/ =qnde =0,
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which implies that
SoMgE@), b —a r3lf—q

on / — {x,}. By Lemma 2 (applied to the polynomial {(g + ),/ (g + ¢)
has at least # zeros on I — {x,}, which means that

2l =gt 2if—y

has at least n zeros on I — {x,!. Thus ¢ = G at at least # points of [ — {x,},
i.c., the polynomial ¢ — g, of degree n -~ [ or less, has at least # zeros on 1,
which means that g = §.

Remark. On the basis of Theorem I, one may conjecture that if ¢ and ¢
are both best approximants to f such that the coefficients of x* for some
k(0 - k << n) are the same in ¢ and g, then ¢ = g. The following example
shows that, in general, this is not the case.

EXAMPLE. Let

and let n = 1. For —} == m < 0 one has

’ 1 - sgn(/f-— mx)dx = 0,

v

and
+3
‘ x-sgn(f - mx)dx = 0.

Y

Thus the linear polynomials mx(—} = m < 0) are best approximants to
/. and all of them have the same coefficient of x"~1. (One notes that the zero
polynomial is also a best approximant to f.)

III. In this section we state without proof extensions of Theorem I.

By arguments similar to those above one can prove the following
statements.

If fis a real-valued Lebesgue integrable function on I, continuous there except
possibly throughout a set S consisting of exactly k distinct points (k = 1) of
! and if ge P, (n = k) satisfies

[1r—qidx=inf [ 1f—pldx,
I I’EPn 7

then f — q has at least n + 1 — k zeros on I — S.
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Let f be a real valued Lebesgue integrable function on I, continuous there
except possibly throughout a set consisting of exactly k distinct points (k- 1)
of L. then if q. i € P, (n = 0)are such that

| g dy - | / Gidy - mf I fop o dx,

Jy <7 PeEP, O
and if the k leading coefficients of ¢ equal. respectively, the corresponding
coefficients of 4. then g = g.

If instead of using polynomials as the approximating functions one uses
linear combinations of functions forming a Haar system, then one can prove
an analog of Theorem 1. We recall that a sequence of continuous real-valued
functions f, ,.... /,, defined on [ is a Haar system if every nontrivial linear
combination of 7| ..... f,, vanishes at at most m | points of /.

THEOREM 2. Let f be a real-valued Lebesgue integrable function on I,
continuous there except possibly at x = 1. Let fy ... [, (m 2) be a Haar
system, and V the linear span of f, ..... 1o - Let wand v belong to V. and satisfv

[ oo dy e ‘ f - W odv o-anf ’ S idy.
Ry o veV Uy
Further, suppose that for some i (1 Foom), [y e fict o fi 1 veeen [ 1S also
a Haar system. Then if w and % have the same coefficient of f; . w = W.

In proving Theorem 2 one uses the following fact: if x, ..... X, are distinct
points in the interior of /(1 == & -~ m -~ 1), then there exists an element of }
which changes sign at exactly these points.

Similar theorems hold in the event that / has & discontinuities.

-

I <k =.om [.
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